

ISTITUTO D'ISTRUZIONE SUPERIORE "Enrico Mattei" ISTITUTO TECNICO COMMERCIALE – LICEO SCIENTIFICO – LICEO delleSCIENZE UMANE Via delle Rimembranze, 26 – 40068 San Lazzaro di Savena BO Tel. 051 464510 – 464545 – fax 452735 iis@istitutomattei.bo.it – http://www.istitutomattei.bo.it

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2020/2021

INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO			
DISCIPLINA: FISICA	ORE SETTIMANALI: 2 (Physics) + 1 (Fisica)	CLASSI PRIME	

Libri di testo

- David Sang, Cambridge IGCSE Physics, Coursebook Second Edition, Cambridge University Press
- David Sang, Cambridge IGCSE Physics, Workbook Second Edition, Cambridge University Press
- Heather Kennet, Cambridge IGCSE Physics, Laboratory Practical Book, Hodder Education

	Syllabus IGCSE	Coursebook	Workbook + Laboratory	Approfondimenti in italiano
IQ	 Length and time Use and describe the use of rules and measuring cylinders to find a length or a volume Use and describe the use of clocks and devices, both analogue and digital, for measuring an interval of time Obtain an average value for a small distance and for a short interval of time by measuring multiples (including the period of a pendulum) Density Recall and use the equation p = m/V Describe an experiment to determine the density of a liquid and of a regularly shaped solid and make the necessary calculation Describe the determination of the density of an irregularly shaped solid by the method of displacement Predict whether an object will float based on density data 	 Making measurements 1.1 Measuring length and volume 1.2 Improving precision in measurements 1.3 Density 1.4 Measuring time 	Workbook Ex 1.1 The SI system of units Ex 1.2 Accurate measurements Ex 1.3 Paper measurements Ex 1.4 Density data Laboratory 1.1 Simple pendulum 1.2 Density	 Prefissi Notazione scientifica Equivalenze Errori nella misura sperimentale (errore assoluto e relativo) Formule e formule inverse (formule di aree e volumi, densità, velocità) Equazioni dimensionali

	Motion	2. Describing motion	Workbook	Rappresentazione nel
	 Define speed and calculate average speed from 		Ex 2.1 Measuring speed	piano cartesiano di
	total time / total distance	2.1 Understanding speed	Ex 2.2 Speed calculations	y=mx+q ; significato di
	 Plot and interpret a speed-time graph or a 	2.2 Distance-time graphs	Ex 2.3 More speed	m e q (caso particolare
	distance-time graph	2.3 Understanding acceleration	calculations	della proporzionalità
	 Recognise from the shape of a speed-time 	2.4 Calculating speed and acceleration	Ex 2.4 Distance – time	diretta y=mx;
	graph when a body is		graphs	determinazione e
	– at rest		Ex 2.5 Acceleration	significato della
	 moving with constant speed 		Ex 2.6 Speed – time	pendenza)
IQ	 moving with changing speed 		graphs	Proporzionalità inversa
	 Calculate the area under a speed-time graph to 			e quadratica
	work out the distance travelled for motion with		Laboratory	equadratica
	constant acceleration		1.3 Motion	
	Demonstrate understanding that acceleration			
	and deceleration are related to changing speed			
	including qualitative analysis of the gradient of a			
	speed-time			
	graph			
	• State that the acceleration of free fall for a			
	body near to the Earth is constant Effect of forces	3. Forces and motion	Workbook	
	Effect of forces	3. Forces and motion		Rappresentazione di
	Becognics that a force may produce a change	3.1 We have lift-off	Ex 3.3 Combining forces Ex 3.4 Force, mass and	dati nel piano
	 Recognise that a force may produce a change in size and shape of a body 	3.2 Mass, weight and gravity	acceleration	cartesiano (scelta delle
	 Plot and interpret extension-load graphs 	3.3 Falling and turning	Ex 3.5 Mass and weight	scale per la
	and describe the associated experimental	3.4 Force, mass and acceleration	Ex 3.6 Falling	rappresentazione dei
	procedure	3.5 The idea of momentum	Ex 3.7 Vector quantities	dati)
IQ	• Describe the ways in which a force may change	3.6 More about scalars and vectors	Ex 3.8 Momentum	• Elementi di
ľ	the motion of a body		calculations	trigonometria (seno,
	• Find the resultant of two or more forces acting		Ex 5.1 Streching a spring	coseno e tangente di
	along the same line	5. Forces and matter	Ex 5.2 Streching a rubber	un angolo e funzioni
	Recognise that if there is no resultant force on a	5.1 Forces acting on solids		inverse)
	body it either remains at rest or continues at	5.2 Streching springs	Laboratory	• Uso della calcolatrice
	constant speed in a straight line	5.3 Hooke's law	1.4 Hooke's law	scientifica
			Attrito	

	Turning effect	4. Turning effects of forces	Workbook
			Ex 4.1 Turning effectf of
	• Describe the moment of a force as a measure of	4.1 The moment of a force	a force
	its turning effect and give everyday examples	4.2 Calculating moments	Ex 4.2 Calculating
	• Understand that increasing force or distance	4.3 Stability of center of mass	moments
	from the pivot increases the moment of a force		Ex 4.3 Stability and
	 Calculate moment using the product force × 		center of mass
	perpendicular distance from the pivot		Ex 4.4 Make a mobile
	• Apply the principle of moments to the		
	balancing of a beam about a pivot		
	Conditions for equilibrium		Laboratory
ШQ			1.5 Balancing a beam
	• Recognise that, when there is no resultant force		1.6 Centre of mass
	and no resultant turning effect, a system is in		
	equilibrium		
	Centre of mass		
	 Perform and describe an experiment to 		
	determine the position of the centre of mass of a		
	plane lamina		
	• Describe qualitatively the effect of the position		
	of the centre of mass on the stability of simple		
	objects		
	Pressure	5. Forces and matter	Workbook
			Ex 5.3 Pressure
	 Recall and use the equation p=F/A 	5.4 Pressure	
	 Relate pressure to force and area, using 	5.5 Calculating pressure	Laboratory
	appropriate examples		1.7 Pressure
ШQ	 Describe the simple mercury barometer and its 		
"Q	use in measuring atmospheric pressure		
	 Relate (without calculation) the pressure 		
	beneath a liquid surface to depth and to density,		
	using appropriate examples		
	 Use and describe the use of a manometer 		
	 Recall and use the equation <i>p</i> = <i>h</i>·ρ·g 		

ΠQ	 Energy Identify changes in kinetic, gravitational potential, chemical, elastic (strain), nuclear and internal energy that have occurred as a result of an event or process Recognise that energy is transferred during events and processes, including examples of transfer by forces (mechanical working), by electrical currents (electrical working), by heating and by waves Apply the principle of conservation of energy to simple examples Recall and use the expressions kinetic energy (K.E. = ½ mv²) and change in gravitational potential energy (G.P.E.= m·g·Δh) Apply the principle of conservation of energy to examples involving multiple stages Explain that in any event or process the energy tends to become more spread out among the objects and surroundings (dissipated) 	 6. Energy transformation and energy transfers 6.1 Form of energy 6.2 Energy conversions 6.3 Conservation of energy 6.4 Energy calculations 	WorkbookEx 6.1 Recognising formsof energyEx 6.2 Energy efficiencyEx 6.3 Energycalculations
ΠQ	 Energy resources Describe how electricity or other useful forms of energy may be obtained from: chemical energy stored in fuel water, including the energy stored in waves, in tides, and in water behind hydroelectric dams geothermal resources nuclear fission heat and light from the Sun (solar cells and panels) wind Give advantages and disadvantages of each method in terms of renewability, cost, reliability, scale and environmental 	7. Energy resources 7.1 The energy we use 7.2 Energy from Sun	Workbook Ex 7.1 Renewables and non-renewables Ex 7.2 Wind energy Ex 7.3 Energy from the Sun

	 Impact Show a qualitative understanding of efficiency Understand that the Sun is the source of energy for all our energy resources except geothermal, nuclear and tidal Show an understanding that energy is released by nuclear fusion in the Sun Recall and use the equation: 		
ШQ	 Work Demonstrate understanding that work done = energy transferred Relate (without calculation) work done to the magnitude of a force and the distance moved in the direction of the force Recall and use W = F·d = ΔE Power Relate (without calculation) power to work done and time taken, using appropriate examples Recall and use the equation P = ΔE/Δt in simple systems 	 8. Work and power 8.1 Doing work 8.2 Calculating work done 8.3 Power 8.4 Calculating power 	Workbook Ex 8.1 Forces doing work, transferring energy Ex 8.2 Calculating work done Ex 8.3 Measuring work done Ex 8.4 Work done

	Thermal physics	9. The kinetic model of matter	Workbook	
			Ex 9.1 Change of state	
	Simple kinetic molecular model of matter	9.1 State of matter	Ex 9.2 The kinetic model	
	States of matter	9.2 The kinetic model of matter	of matter	
	• State the distinguishing properties of solids, liquids	9.3 Forces and kinetic theory	Ex 9.3 Brownian motion	
	and gases	9.4 Gas and the kinetic theory	Ex 9.4 Understanding	
	Molecular model		gases	
	 Describe qualitatively the molecular structure of 		Ex 9.5 Boyle's law	
	solids, liquids and gases in terms of the arrangement,			
	separation and motion of the molecules			
	 Interpret the temperature of a gas in terms of the 			
	motion of its molecules			
	• Describe qualitatively the pressure of a gas in terms			
	of the motion of its molecules			
	• Show an understanding of the random motion of particles in a suspension as evidence for the kinetic			
ΠQ	molecular model of matter			
	Describe this motion (sometimes known as			
	Brownian motion) in terms of random molecular			
	bombardment			
	 Relate the properties of solids, liquids and gases to 			
	the forces and distances between molecules and to			
	the motion of the molecules			
	• Explain pressure in terms of the change of			
	momentum of the particles striking the walls creating a force			
	 Show an appreciation that massive particles may be 			
	moved by light, fast-moving molecules			
	Evaporation			
	• Describe evaporation in terms of the escape of			
	more-energetic molecules from the surface of a liquid			
	Relate evaporation to the consequent cooling of the			
	liquid			

 Demonstrate an understanding of how temperature, surface area and draught over a surface influence evaporation Explain the cooling of a body in contact with an evaporating liquid <i>Pressure changes</i> Describe qualitatively, in terms of molecules, the effect on the pressure of a gas of: a change of temperature at constant volume a change of volume at constant temperature Recall and use the equation pV = constant for a fixed mass of gas at constant temperature

Thern				
solids, • Ident applica • Expla molect expans	mal expansion of solids, liquids and gases cribe qualitatively the thermal expansion of liquids, and gases at constant pressure tify and explain some of the everyday ations and consequences of thermal expansion ain, in terms of the motion and arrangement of ules, the relative order of the magnitude of the sion of solids, liquids and gases	10.1 Temperature and temperature scales10.2 Designing a thermometer10.3 Thermal expansion10.4 Thermal capacity10.5 Specific heat capacity10.6 Latent heat	 10.1 Calibrating a thermometer 10.2 Energy and temperature 10.3 Demonstrating thermal expansion 10.4 Thermal expansion 10.5 Heat Calculation 	formula Q = m·c·ΔT nella risoluzione di esercizi elementari • Applicazioni della formula Q = <i>λ</i> • m nella risoluzione di esercizi elementari
 Appritempe Reco Desc liquid-i Demilineariti Desc undersimeasu rapidly Desc glass tillineariti Therm Relation Show thermation Give internation Reca Definition 	ribe the structure of a thermocouple and show standing of its use as a thermometer for uring high temperatures and those that vary cribe and explain how the structure of a liquid-in- hermometer relates to its sensitivity, range and		Laboratory 2.1 Specific heat capacity 2.2 Specific latent heat 2.3 Conduction and radiation	

 Recall and use the equation change in energy = m·c·ΔT 		
Melting and boiling		
• Describe melting and boiling in terms of energy input		
without a change in temperature		
 State the meaning of melting point and boiling point 		
• Describe condensation and solidification in terms of		
molecules		
 Distinguish between boiling and evaporation 		
Use the terms latent heat of vaporisation and latent		
heat of fusion and give a molecular interpretation of		
latent heat		
Define specific latent heat		
• Describe an experiment to measure specific latent		
heats for steam and for ice		
 Recall and use the equation energy = λ·m 		

	Thermal processes	11. Thermal (heat) energy transfers	Workbook	
ΠQ	 Conduction Describe experiments to demonstrate the properties of good and bad thermal conductors Give a simple molecular account of conduction in solids including lattice vibration and transfer by electrons Convection Recognise convection as an important method of thermal transfer in fluids Relate convection in fluids to density changes and describe experiments to illustrate convection Radiation Identify infra-red radiation as part of the electromagnetic spectrum Recognise that thermal energy transfer by radiation does not require a medium Describe the effect of surface colour (black or white) and texture (dull or shiny) on the emission, absorption and reflection of radiation Describe experiments to show the properties of good and bad emitters and good and bad absorbers of infra-red radiation Show understanding that the amount of radiation emitted also depends on the surface temperature and surface area of a body Consequences of energy transfer Identify and explain some of the everyday applications and consequences of conduction, convection and radiation 	11.1 Conduction 11.2 Convection 12.3 Radiation 13.4 Some consequences of thermal energy transfer	Ex 11.1 Conduction of heat Ex 11.2 Convection currents Ex 10.3 Radiation Ex 10.4 Losing heat Ex 10.5 Warming up, cooling down	